
Preql Documentation

Erez Shinan

Aug 17, 2022

Overview

1 Preface 3

2 Preql 5
2.1 Preql compiles to SQL . 5
2.2 Preql is interpreted . 5
2.3 Better syntax, semantics, and practices . 6
2.4 Escape hatch to SQL . 6

3 Conclusion 7

4 Features 9
4.1 Planned features . 10

5 Performance 11
5.1 Components . 11
5.2 Benchmarks . 11

6 Roadmap 13

7 FAQ 15
7.1 Technical Help . 15
7.2 Community and Support . 15
7.3 License . 16

8 Tutorial for the basics of Preql 17
8.1 What is Preql? . 17
8.2 Getting Started (Install & How to use) . 17
8.3 Basic Expressions . 18
8.4 Functions . 20
8.5 Tables . 21
8.6 The SQL Escape-hatch . 28
8.7 Notable Built-in functions . 29
8.8 Calling Preql from Python . 29

9 Code comparison: Preql, SQL and the rest 31
9.1 Table Operations . 31
9.2 Gotchas . 34
9.3 Programming . 34

i

10 Getting Started 37
10.1 Install . 37
10.2 Run the interpreter in the console (REPL) . 37
10.3 Run in a Jupyter Notebook . 38
10.4 Use as a Python library . 38
10.5 Run as a REST / GraphQL server . 39
10.6 Further reading . 39

11 Why not SQL/ORM/Pandas ? 41
11.1 SQL . 41
11.2 ORMs . 42
11.3 Pandas . 42

12 Language Reference 43
12.1 Literals . 43
12.2 Keywords . 45

13 Preql Types 47

14 Preql Modules 51
14.1 __builtins__ . 51
14.2 graph . 64

15 Python API Reference 67
15.1 Preql . 67

16 Resources 69

Index 71

ii

Preql Documentation

Overview 1

Preql Documentation

2 Overview

CHAPTER 1

Preface

Relational databases are a common and powerful approach to storing and processing information. Based on the solid
foundation of relational algebra, they are efficient, resilient, well-tested, and full of useful features.

However, they all share the same weakness: They all use an antiquated programming interface called SQL.

While SQL was clever and innovative at the time of its conception, today we can look back on its design and see it has
many fundamental mistakes, which make SQL incompatible with our contemporary notions of how a programming
language should look and work.

As data becomes ever more important to the world of computation, so grows the appeal of a better solution. This need
for an alternative inspired us to create the Preql programming language.

3

Preql Documentation

4 Chapter 1. Preface

CHAPTER 2

Preql

Preql is a new programming language that aims to replace SQL as the standard language for programming databases.

These are big shoes to fill. Here is how Preql intends to do it:

2.1 Preql compiles to SQL

Like SQL, Preql is guided by relational algebra, and is designed around operations on tables.

In Preql, table is a built-in type that represents a database table, and all table operations, such as filtering, sorting,
and group-by, are compiled to SQL.

That means Preql code can run as fast and be as expressive as SQL.

Preql supports multiple targets, including PostgreSQL, MySQL and SQLite. See features for a complete list.

2.2 Preql is interpreted

Not everything can be done in SQL. Control-flow constructs like for-loops, or downloading a remote JSON file, aren’t
possible in every database implementation.

Some things, such as first-class functions, or reflection, aren’t possible at all.

Whenever your Preql code can’t be compiled to SQL, it will be interpreted instead.

Being interpreted also lets Preql adopt advanced concepts, like “everything is an object”, support for eval(), and so
on.

That means in Preql you can do anything you could do in Python or Javascript, even when SQL can’t.

5

Preql Documentation

2.3 Better syntax, semantics, and practices

Preql’s syntax is inspired by javascript. It’s relatively concise, and familiar to programmers.

It integrates important ideas like Fail-Early, and the Principle Of Least Astonishment.

The code itself is stored in files, instead of a database, which means it can be version-controlled (using git or similar)

Preql also comes with an interactive prompt with auto-complete.

2.4 Escape hatch to SQL

There are many dialects of SQL, and even more plugins and extensions. Luckily, we don’t need to support all of them.

Preql provides the builtin function SQL(), which allows you to run arbitrary SQL code, anywhere in your Preql code.

6 Chapter 2. Preql

preql-modules.html#SQL

CHAPTER 3

Conclusion

Preql’s design choices allow it to be fast and flexible, with a concise syntax.

Preql adopts the good parts of SQL, and offers improvements to its weakest points.

Where to go next?

• Read the tutorial as it takes you through the basics of Preql

• Browse the examples and learn how Preql can be used.

7

https://github.com/erezsh/Preql/tree/master/examples

Preql Documentation

8 Chapter 3. Conclusion

CHAPTER 4

Features

Preql is a programming language, a library, an interactive shell, and a set of tools.

• Modern syntax and semantics

– Interpreted, everything is an object

– Strong type system with gradual type validation and duck-typing

– Modules, functions, exceptions, tables, structs

• SQL integration

– Compiles to SQL whenever possible (guaranteed for all table operations)

– Escape hatch to SQL (write raw SQL expression within Preql code)

– Support for multiple SQL targets

* SQLite

* PostgreSQL

* MySQL

* BigQuery

* Askgit :)

* More to come!

• Python integration

– Use from Python as a library

– Call Python from Preql

– Pandas integration

• Interactive Environment

– Shell (REPL), with auto-completion

– Runs on Jupyter Notebook, with auto-completion

9

Preql Documentation

• Thread-safe

• REST+JSON server, automatically generated

4.1 Planned features

• See the roadmap

10 Chapter 4. Features

CHAPTER 5

Performance

5.1 Components

For understanding performance, Preql should be considered as split into two components:

In a typical Preql program, most of the time will be spent in executing SQL, rather than in the interpreter.

Running SQL through Preql adds a constant-time cost, due to real-time compilation. This may be noticeable in very
fast queries, such as fetching a single row by id.

Future versions of Preql will cut the constant-time cost significantly, by caching the compiled SQL (a poc is already
working).

5.2 Benchmarks

5.2.1 Comparison to hand-written SQL

The following benchmark compared the performance of hand-written SQL queries to Preql-generated SQL (without
compilation costs).

The code is available on benchmark/test_chinook.py

Results for Sqlite3 (1000 iterations):

11

https://github.com/erezsh/Preql/blob/master/benchmark/test_chinook.py

Preql Documentation

-

• Test A - Simple selection and projection

• Test B - Multiple joins and a groupby

12 Chapter 5. Performance

CHAPTER 6

Roadmap

Preql still has a long way to go, in terms of features and capabilities.

While plans can always change, here is a list of features that will probably make it in the near future:

• Language

– JSON operations in SQL

– API for Graph computation over SQL

– Multiple Dispatch (multimethods)

– Automatic joins via attribute access

– Automatic Many-to-many

• Compilation Technology

– JIT compilation (PoC is already working!)

– Compile control flow to SQL

• Support for more databases

– Redshift

– CockroachDB

– TimeSeries

– MongoDB?

– More. . .

• Usability and integration

– IDE support (vscode, etc.)

– Automatically generate GraphQL interface

– Migrations

13

Preql Documentation

14 Chapter 6. Roadmap

CHAPTER 7

FAQ

7.1 Technical Help

7.1.1 I’m new to Python. How do I install Preql?

First, you need to make sure Python is installed, at version 3.6 or above. You can get it from https://www.python.org/
downloads/.

Then, open your command-line or shell, and write the following:

python -m pip install preql --user

The Python executable might be called python3, or python3.9 etc.

The --user switch ensures you won’t need special permissions for the installation.

7.2 Community and Support

7.2.1 I think I found a bug. What do I do?

We’ll do our best to solve bugs as quickly as possible.

If you found a bug in Preql, open an issue here: https://github.com/erezsh/Preql/issues/new

Include any information you can share. The best way is with a minimal code example that runs and demonstrates the
error.

7.2.2 Where can I ask questions?

You can ask any question here: https://github.com/erezsh/Preql/discussions

15

https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/erezsh/Preql/issues/new
https://github.com/erezsh/Preql/discussions

Preql Documentation

7.2.3 Contact Me

If you want to contact me privately, you may do so through email, at erezshin at gmail.com, or through twitter.

I am also available for paid support.

7.3 License

7.3.1 Can I use Preql in my project/company/product?

Preql is completely free for personal use, including internal use in commercial companies.

For use in projects and products, as a library, the license differentiates between two kinds of use:

1. Projects or products that use Preql internally, and don’t expose the language to the user, may consider Preql as
using the MIT license. That also applies to commercial projects and products.

2. Projects or products that intentionally expose the language to the user, as part of their interface. Such use is only
allowed for non-commercial projects, and then they must include the Preql license.

If you would like to embed the Preql language in your commercial project, and to benefit from its interface, contact us
to buy a license.

7.3.2 Why not dual license with GPL, AGPL, or other OSI-approved license?

In the history of open-source, GPL and AGPL were often used as a subtle strategy to disuade unfair commercial use.
Most companies, and especially corporations, didn’t want to share their own code, and so they had to buy a license if
they wanted to use it.

Unfortunately, GPL and even AGPL don’t fully protect software from exploitation by competitors, particularly cloud
providers.

That is why many open-source projects, who were once AGPL, BSD or Apache 2.0, have decide to start using to their
own license. Famous examples include Redis, Confluent, MongoDB, and Elastic.

7.3.3 Is Preql open-source?

Preql’s license is in line with some definitions of “open source”, but does not fit the definition outlined by the OSI.

For practical purposes, Preql can be called “source available”, or transparent-source.

16 Chapter 7. FAQ

https://twitter.com/erezsh

CHAPTER 8

Tutorial for the basics of Preql

8.1 What is Preql?

Preql is a relational programming language that runs on relational databases, such as PostgreSql, MySql, and Sqlite.

It does so by compiling to SQL. However, its syntax and semantics resemble those of Javascript and Python.

By combining these elements, Preql lets you write simple and elegant code that runs as fast as SQL.

We’ll soon dive into the language itself, but first let’s install and learn how to use the interpreter

8.2 Getting Started (Install & How to use)

You can install preql by running this in your shell/command prompt:

$ pip install -U preql

Usually, you would connect Preql to a database, or load an existing module.

But, you can also just run the preql interpreter as is:

$ preql
Preql 0.1.16 interactive prompt. Type help() for help
>>

By default, the interpreter uses SQLite’s memory database. We’ll later see how to change it using the connect()
function.

From now on, we’ll use >> to signify the Preql REPL.

Press Ctrl+C at any time to interrupt an existing operation or prompt. Press Ctrl+D or run exit() to exit the
interpreter.

You can run the names() function to see what functions are available, and help() to get interactive help.

17

Preql Documentation

You can also run a preql file. Let’s create a file called helloworld.pql:

// helloworld.pql
print "Hello World!"

And then run it:

$ preql -m helloworld
Hello World!

Alternatively, we could do preql -f helloworld.pql, if we want to specify a full path.

We can also use Preql as a Python library:

In the Python interpreter
from preql import Preql
p = Preql()

assert p('sum([1..10])') == 45

p('''
func my_range(x) = [1..x]

''')
print(p.my_range(8))
Output:
[1, 2, 3, 4, 5, 6, 7]

8.3 Basic Expressions

Preql has integers, floats and strings, which behave similarly to Python

null behaves just like Python’s None.

>> 1 + 1
2
>> 2 / 4
0.5
>> 27 % 13
1
>> "a" + "b"
"ab"
>> "-" * 5
"-----"

>> (not 0) and 2 < 4
True
>> null == null // Unlike SQL!
True
>> null + 1
Exception traceback:

~~~ At '<repl>' line 1, column 6
null + 1
-----^---

TypeError: Operator '+' not implemented for nulltype and int

18 Chapter 8. Tutorial for the basics of Preql



Preql Documentation

Notice that dividing two integers results in a float. To get an integer, use the /~ operator, which is equivalent to
Python’s // operator:

>> 10 /~ 3
3

You can get the type of anything in Preql by using the type() function:

>> type(10)
int
>> type(int)
type

Preql also has lists, which are essentially a table with a single column called item:

>> my_list = [1,2,3]
table
=3

item

1
2
3

>> count(my_list + [4,5,6])
6
>> names(my_list)

table =1

name type doc

item int

>> type(my_list)
list[int]
>> type(["a", "b", "c"])

list[string]

The range syntax creates a list of integers:

>> [1..100]
table =99

item

1
2
3
4
5

...

Preql only shows us a preview of the table. If we want to see more items, we can just enter a dot (.) in the prompt:

>> .
table [5..] =99

(continues on next page)

8.3. Basic Expressions 19



Preql Documentation

(continued from previous page)

item

6
7
8
9

10
...

Entering . again will keep scrolling more items.

8.3.1 inspect_sql

You might be curious what SQL statements are being executed behind the scenes. You can find out using the
inspect_sql() function.

>> print inspect_sql([1..10] + [20..30])

WITH RECURSIVE range1 AS (SELECT 1 AS item UNION ALL SELECT item+1 FROM range1 WHERE
→˓item+1<10)

, range2 AS (SELECT 20 AS item UNION ALL SELECT item+1 FROM range2 WHERE item+1
→˓<30)

SELECT * FROM [range1] UNION ALL SELECT * FROM [range2] LIMIT -1

8.4 Functions

Declare functions using func:

func sign(x) {
if (x == 0) {
return 0

} else if (x > 0) {
return 1

} else {
return -1

}
}
>> sign(-100)
-1
>> sign(100)
1

You can also use them in table operations!

>> [-20, 0, 30]{ sign(item) }
table
=3

sign

(continues on next page)

20 Chapter 8. Tutorial for the basics of Preql



Preql Documentation

(continued from previous page)

-1
0
1

Let’s inspect the SQL code that is executed:

>> print inspect_sql([-20, 0, 30]{ sign(item) })

WITH RECURSIVE list_1([item]) AS (VALUES (-20), (0), (30))
SELECT CASE WHEN ([item] = 0) THEN 0 ELSE CASE WHEN ([item] > 0) THEN 1 ELSE -1

→˓END END AS [sign] FROM [list_1]

Note: Functions with side-effects or I/O operations aren’t allowed in table operations, due to SQL’s limitations.

There’s also a shorthand for “one-liners”:

>> func str_concat(s1, s2) = s1 + s2
>> str_concat("foo", "bar")
"foobar"

Functions are objects just like everything else, and can be passed around to other functions.

Here is a toy example that demonstrates this:

func apply_function(f, x) = f(x)

my_list = ["this", "is", "a", "list"]

// Run `apply_function` for each item, and use the built-in `length` function for
→˓strings.
// `len` is just the name of the new column.
print my_list{

len: apply_function(length, item)
}
// Output:
// table =4
//
// len
//
// 4
// 2
// 1
// 4
//

8.5 Tables

Tables are essentially a list of rows, where all the rows have the same structure.

That structure is defined by a set of columns, where each column has a name and a type.

Preql’s tables are stored in an SQL database, and most operations on them are done efficiently using SQL queries.

Here is how we would define a table of points:

8.5. Tables 21



Preql Documentation

table Point {
x: float
y: float

}

This statement creates a persistent table named Point in your database (if you are connected to one. The default
database resides in memory and isn’t persistent). The executed SQL looks like this:

CREATE TABLE IF NOT EXISTS "Point" ("id" INTEGER, "x" FLOAT NOT NULL, "y" FLOAT NOT
→˓NULL, PRIMARY KEY (id))

If the table Point already exists, it will instead verify that the new definition is a subset of the existing one. That is,
that all the columns defined in it exist in the current table, and with the correct type.

For this tutorial, let’s create a table that’s little more meaningful, and populate it with values:

table Country {
name: string
population: int

}

palau = new Country("Palau", 17900)
nauru = new Country("Nauru", 11000)
new Country("Tuvalu", 10200)

new accepts its parameters in the order that they were defined in the table. However, it’s also possible to use named
arguments, such as new Point(y:10, x:1).

In the above example, we assigned the newly created rows to variables. But they also exist independently in the table.

We can see that the Country table has three rows:

>> count(Country)
3

The new statements inserted our values into an SQL table, and count() ran the following query: SELECT
COUNT(*) FROM Country

(Note: You can see every SQL statement that’s executed by starting the REPL with the --print-sql switch.)

We can also observe the variables, or the entire table:

>> palau
Row{id: 1, name: "Palau", population: 17900}
>> palau.population + 1
17901
>> Country

table Country =3

id name population

1 Palau 17900
2 Nauru 11000
3 Tuvalu 10200

Notice that every table automatically gets an id column. It’s a useful practice, that provides us with an easy and
performant “pointer” to refer to rows.

22 Chapter 8. Tutorial for the basics of Preql



Preql Documentation

8.5.1 Table operations

There are many operations that you can perform on a table. Here we’ll run through the main ones.

Selection lets us filter tables using the selection operator:

// All countries that contain the letter 'l' and a population below 15000
>> Country[name like "%l%", population < 15000]

id name population

3 Tuvalu 10200

We can chain table operations:

>> Country[name like "%l%" or population < 11000] {name, population}
table =2

name population

Palau 17900
Tuvalu 10200

We can also filter the rows by index (zero-based), by providing it with a range instead.

>> Country[1..]
table Country =2

id name population

2 Nauru 11000
3 Tuvalu 10200

Notice that the row index and the value of the id column are not related in any meaningful way.

Projection lets us create new tables, with columns of our own choice:

>> Country{name, is_big: population>15000}
table =3

name is_big

Palau 1
Nauru 0
Tuvalu 0

>> Country[name like "P%"]{name, is_big: population>15000}
table =1

name is_big

Palau 1

>> func half(n) = n / 2
>> Country{..., half(population)} // Ellipsis fills in the rest of the columns

(continues on next page)

8.5. Tables 23



Preql Documentation

(continued from previous page)

table =3

id name population half

1 Palau 17900 8950.0
2 Nauru 11000 5500.0
3 Tuvalu 10200 5100.0

Notice that Preql creates a new table type for each projection. Therefore, the fields that aren’t included in the projection,
won’t be available afterwards.

However these are only types, and not actual tables. To create a persistent table, we can write:

table half_population = Country{..., half(population)}

Now, if connected to a database, half_population will be stored persistently.

Aggregation looks a lot like projection, and lets us aggregate information:

The syntax is basically { keys => values }

// Count how many countries there are, for each length of name.
>> Country { length(name) => count(id) }

table =2

length count

5 2
6 1

// If no keys are given, aggregate all the rows into one.
>> world_population = Country { => sum(population) }
table =1

sum

39100

// We can extract the row from the table using the `one` operator
>> one world_population
Row{sum: 39100}

// Create an even-odd histogram
>> [1,2,3,4,5,6,7] {

odd: item % 2 => count(item)
}
table =2

odd count

0 3
1 4

// Sum up all the squares
(continues on next page)

24 Chapter 8. Tutorial for the basics of Preql



Preql Documentation

(continued from previous page)

>> func sqrsum(x) = sum(x*x)
>> [1,2,3,4]{ => sqrsum(item)}
table =1

sqrsum

30

Ordering lets us sort the rows into a new table.

>> Country order {population} // Sort ascending
table Country =3

id name population

3 Tuvalu 10200
2 Nauru 11000
1 Palau 17900

>> Country order {^name} // Sort descending (^)
table Country =3

id name population

3 Tuvalu 10200
1 Palau 17900
2 Nauru 11000

8.5.2 Lazy-evaluation vs Temporary tables

Immutable table operations, such as selection and projection, are lazily-evaluated in Preql. That means that they don’t
execute until strictly necessary.

This allows for gradual chaining, that the compiler will then know to merge into a single query:

a = some_table[x > 100] // No SQL executed
b = a {x => sum(y)} // ... same here
first20 = b[..20] // ... same here
print first20 // Executes a single SQL query for all previous statements
print first20 // Executes the same SQL query all over again.

Lazy-evaluation for queries has the following advantages:

• Results in better compilation

• Leaner memory use, since we don’t store intermediate results

• The results of the query are ‘live’, and update whenever the source table updates.

However, in situations when the same query is used in several different statements, it may be inefficient to run the
same query again and again.

In those situations it may be useful to store the results in a temporary table:

8.5. Tables 25



Preql Documentation

table first20 = b[..20] // Execute a single SQL query and store it
print first20 // Only needs to query the 'first20' table
print first20 // Only needs to query the 'first20' table

A temporary table is a table that’s persistent in the database memory for as long as the session is alive.

Here’s another example:

// Create a temporary table that resides in database memory
>> table t_names = Country[population>100]{name} // Evaluated here once
>> count(t_names) + count(t_names)

// Create a query through lazy-evaluation. It's just a local definition
>> q_names = Country[population>100]{name}
>> count(q_names) + count(q_names) // Evaluated here twice

The main disadvantage of using temporary tables is that they may fill up the database memory when working with
large tables.

8.5.3 Update

We can update tables in-place.

Updates are evaluated immediately. This is true for all expressions that change the global state.

Example:

>> Country update {population: population + 1}
table Country =3

id name population

1 Palau 17901
2 Nauru 11001
3 Tuvalu 10201

>> Country[name=="Palau"] update {population: population - 1}
table Country =1

id name population

1 Palau 17900

>> Country
table Country =3

id name population

1 Palau 17900
2 Nauru 11001
3 Tuvalu 10201

26 Chapter 8. Tutorial for the basics of Preql



Preql Documentation

8.5.4 Join

Joining two tables means returning a new table that contains the rows of both tables, matched on a certain attribute.

It is possible to omit the attributes when there is a predefined relationship between the tables.

// Create tables from lists. That automatically adds an `id` column.
>> table odds = [1, 3, 5, 7, 9, 11]
>> table primes = [2, 3, 5, 7, 11]

// Join into columns `o` and `p`, which are structures containing the original rows.
>> join(o: odds.item, p: primes.item)

o p

{'item': 3, 'id': 2} {'item': 3, 'id': 2}
{'item': 5, 'id': 3} {'item': 5, 'id': 3}
{'item': 7, 'id': 4} {'item': 7, 'id': 4}
{'item': 11, 'id': 6} {'item': 11, 'id': 5}

// We can then destructure it into a regular table
>> join(o: odds.item, p: primes.item) {o.item, o_id: o.id, p_id: p.id}

table =4

item o_id p_id

3 2 2
5 3 3
7 4 4

11 6 5

// We can filter countries by name, by joining on their name:
>> join(c: Country.name, n:["Palau", "Nauru"].item) {...c}

table =2

id name population

1 Palau 17900
2 Nauru 11001

// But idiomatically, the best way to accomplish this is to use the `in` operator
>> Country[name in ["Palau", "Nauru"]]

table Country =2

id name population

1 Palau 17900
2 Nauru 11001

// Or not in
>> Country[name !in ["Palau", "Nauru"]]

table Country =1

id name population

(continues on next page)

8.5. Tables 27



Preql Documentation

(continued from previous page)

3 Tuvalu 10201

8.6 The SQL Escape-hatch

Preql does not, and cannot, implement every SQL function and feature.

There are too many dialects of SQL, and too few Preql programmers (for now).

Luckily, there is an escape hatch, through the SQL() function.

The first argument is the type of the result, and the second argument is a string of SQL code.

>> func do_sql_stuff(x) = SQL(string, "lower($x) || '!'") // Runs in Sqlite
>> ["UP", "Up", "up"]{ do_sql_stuff(item) }

table =3

do_sql_stuff

up!
up!
up!

We can also query entire tables:

>> SQL(Country, "SELECT * FROM $Country WHERE name == \"Palau\"")
table Country =1

id name population

1 Palau 17900

Notice that “Country” is used twice in different contexts: once as the return type, and once for querying its rows.

In fact, many of Preql’s core functions are written using the SQL() function, for example enum:

func enum(tbl) {
"Return the table with a new index column"
// Uses SQL's window functions to calculate the index per each row
// Remember, ellipsis (...) includes all available columns.
return tbl{

index: SQL(int, "row_number() over ()")
...

}
}

// Add an index for each row in the table
>> enum(Country order {population})

table =3

index id name population

(continues on next page)

28 Chapter 8. Tutorial for the basics of Preql



Preql Documentation

(continued from previous page)

0 3 Tuvalu 10201
1 2 Nauru 11001
2 1 Palau 17900

8.7 Notable Built-in functions

Here is a partial list of functions provided by Preql:

• debug() - call this from your code to drop into the interpreter. Inside, you can use c() or continue() to
resume running.

• import_csv(table, filename) - import the contents of a csv file into an existing table

• random() - return a random number

• now() - return a datetime object for now

• sample_fast(tbl, n) - return a sample of n rows from table tbl (O(n), maximum of two queries). May
introduce a minor bias (See help(sample_fast)).

• bfs(edges, initial) - performs a breadth-first search on a graph using SQL

• count_distinct(field) - count how many unique values are in the given field/column.

To see the full list, run the following in Preql: names(__builtins__)[type like "function%"]

8.8 Calling Preql from Python

Preql is not only a standalone tool, but also a Python library. It can be used as an alternative to ORM libraries such as
SQLAlchemy.

It’s as easy as:

>>> import preql
>>> p = preql.Preql()

You can also specify which database to work on, and other parameters.

Then, just start working by calling the object with Preql code:

# Use the result like in an ORM
>>> len(p('[1,2,3][item>=2]'))
2

# Turn the result to JSON (lists and dicts)
>>> p('[1,2]{type: "example", values: {v1: item, v2: item*2}}').to_json()
[{'type': 'example', 'values': {'v1': 1, 'v2': 2}}, {'type': 'example', 'values': {'v1
→˓': 2, 'v2': 4}}]

# Run Preql code file
>>> p.load('some_file.pql')

You can also reach variables inside the Preql namespace using:

8.7. Notable Built-in functions 29



Preql Documentation

>>> p('a = [1,2,3]')
>>> sum(p.a)
6
>>> p.char_range('w', 'z') # char_range() is a built-in function in Preql
['w', 'x', 'y', 'z']

8.8.1 Using Pandas

You can easily import/export tables between Preql and Pandas, by using Python as a middleman:

>>> from pandas import DataFrame
>>> import preql
>>> p = preql.Preql()
>>> f = DataFrame([[1,2,"a"], [4,5,"b"], [7,8,"c"]], columns=['x', 'y', 'z'])

>>> x = p.import_pandas(x=f)
>>> p.x # Returns a Preql table
[{'x': 1, 'y': 2, 'z': 'a', 'id': 1}, {'x': 4, 'y': 5, 'z': 'b', 'id': 2}, {'x': 7, 'y
→˓': 8, 'z': 'c', 'id': 3}]

>>> p('x {y, z}').to_pandas() # Returns a pandas table
y z

0 2 a
1 5 b
2 8 c

>>> p('x{... !id}').to_pandas() == f # Same as it ever was
x y z

0 True True True
1 True True True
2 True True True

30 Chapter 8. Tutorial for the basics of Preql



CHAPTER 9

Code comparison: Preql, SQL and the rest

This document was written with the aid of Pandas’ comparison with SQL.

Use the checkboxes to hide/show the code examples for each language.

9.1 Table Operations

9.1.1 Selecting columns

Column selection is done using the projection operator, {}.

tips{total_bill, tip, smoker, time}

The table name (tips) comes first, so that Preql can automatically suggest the field names.

In SQL, selection is done using the SELECT statement

SELECT total_bill, tip, smoker, time FROM tips;

tips[['total_bill', 'tip', 'smoker', 'time']]

9.1.2 Filtering rows

Row filtering is done using the filter operator, []:

tips[size >= 5 or total_bill > 45]

SELECT * FROM tips WHERE size >= 5 OR total_bill > 45;

DataFrames can be filtered in multiple ways; Pandas suggest using boolean indexing:

31

https://pandas.pydata.org/docs/getting_started/comparison/comparison_with_sql.html


Preql Documentation

tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]

from sqlalchemy import or_
session.query(Tips).filter(or_(Tips.size >= 5, Tips.total_bill > 45))

9.1.3 Group by / Aggregation

In this example, we calculate how the amount of tips differs by day of the week.

Preql extends the projection operator to allow aggregation using the => construct:

tips{day => avg(tip), count()}

Conceptually, everything on the left of => are the keys, and on the right are the aggregated values.

SELECT day, AVG(tip), COUNT(*) FROM tips GROUP BY day;

tips.groupby('day').agg({'tip': np.mean, 'day': np.size})

from sqlalchemy import func
session.query(Tips.day, func.avg(Tips.tip), func.count(Tips.id)).group_by(Tips.day).
→˓all()

9.1.4 Concat, Union

In this example, we will concatenate and union two tables together.

table1 + table2 // concat

table1 | table2 // union

SELECT * FROM table1 UNION ALL SELECT * FROM table2; -- concat

SELECT * FROM table1 UNION SELECT * FROM table2; -- union

pd.concat([table1, table2]) # concat

pd.concat([table1, table2]).drop_duplicates() # union

union_all(session.query(table1), session.query(table2)) # concat

union(session.query(table1), session.query(table2)) # union

9.1.5 Top n rows with offset (limit)

tips[5..15]
// OR
tips[5..][..10]

32 Chapter 9. Code comparison: Preql, SQL and the rest



Preql Documentation

SELECT * FROM tips ORDER BY tip DESC LIMIT 10 OFFSET 5;

tips.nlargest(10 + 5).tail(10)

9.1.6 Join

Join is essentially an operation that matches rows between two tables, based on common attributes.

join(a: table1.key1, b: table2.key2)

The result is a table with two columns, a and b, which are structs that each contain the columns of their respective
table.

If we have pre-defined a “default join” between tables, we can shorten it to:

join(a: table1, b: table2)

Preql also offers the functions leftjoin(), outerjoin(), and joinall().

SELECT * FROM table1 INNER JOIN table2 ON table1.key1 = table2.key2;

pd.merge(df1, df2, on='key')

(it gets complicated if the key isn’t with the same name)

session.query(Table1).join(Tables2).filter(Table1.key1 == Table2.key2)

9.1.7 Insert row

Insert a row to the table, and specifying the columns by name.

new Country(name: "Spain", language: "Spanish")

INSERT INTO Country (name, language) VALUES ("Spain", "Spanish")

countries = countries.append({'name':'Spain', 'language': 'Spanish'}, ignore_
→˓index=True)

session.add(Country(name='Spain', language='Spanish'))

9.1.8 Update rows

tips[tip < 2] update {tip: tip*2}

Preql puts the update keyword after the selection, so that when working interactively, you can first see which rows
you’re about to update.

UPDATE tips SET tip = tip*2 WHERE tip < 2;

9.1. Table Operations 33



Preql Documentation

tips.loc[tips['tip'] < 2, 'tip'] *= 2

(takes a different form for complex operations)

9.2 Gotchas

9.2.1 Null checks

Comparisons to null behave like in Python.

tips[col2==null]

Preql also has a value called unknown, which behaves like SQL’s NULL.

Simple comparison to NULL using =, will always return NULL. For comparing to NULL, you must use the IS operator
(the operator name changes between dialects).

SELECT * FROM tips WHERE col2 IS NULL;

tips[tips['col2'].isna()]

9.3 Programming

9.3.1 Defining a function, and calling it from the query

func add_one(x: int) = x + 1

my_table{ add_one(my_column) }

(Type annotations validate the values at compile-time)

(Postgres dialect)

CREATE FUNCTION add_one(x int)
RETURNS int
AS
$$
SELECT x + 1

$$
LANGUAGE SQL IMMUTABLE STRICT;

SELECT add_one(my_column) FROM my_table;

def add_one(x: int):
return x + 1

my_table['my_column'].apply(add_one)

Impossible?

34 Chapter 9. Code comparison: Preql, SQL and the rest



Preql Documentation

9.3.2 Counting a table from Python

This example demonstrates Preql’s Python API.

All examples set row_count to an integer value.

(assumes p is a preql instance)

row_count = len(p.my_table)

Or:

row_count = p('count(my_table)')

cur = conn.execute('SELECT COUNT() FROM my_table')
row_count = cur.fetchall()[0][0]

row_count = len(my_table.index)

row_count = session.query(my_table).count()

9.3. Programming 35



Preql Documentation

36 Chapter 9. Code comparison: Preql, SQL and the rest



CHAPTER 10

Getting Started

10.1 Install

1. Ensure you have Python 3.6, or above, installed on your system.

2. Ensure you have pip for Python (you probably already do).

3. Run the following command:

pip install -U preql

10.2 Run the interpreter in the console (REPL)

To start the interpreter, run the following in your shell:

preql

Preql will use Sqlite’s memory database by default.

To see the running options, type:

preql --help

10.2.1 Explore an existing database

When you start the interpreter, you can specify which database to connect to, using a URL.

# Postgresql
preql postgres://user:pass@host/dbname

# MySQL

(continues on next page)

37

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/


Preql Documentation

(continued from previous page)

preql mysql://user:pass@host/dbname

# Sqlite (use existing or create new)
preql sqlite://path/to/file

When already inside the Preql interactive prompt, a Jupyter Notebook, or a running script, use the connect()
method:

connect("sqlite://path/to/file")

Use introspective methods to see a list of the tables, and of the available functions:

// Get a list of all tables in database
>> tables()

// Get help regarding how to use Preql
>> help()

// For example:
>> help(connect)
func connect(uri, load_all_tables, auto_create) = ...

Connect to a new database, specified by the uri
...

10.3 Run in a Jupyter Notebook

1. Install the Preql kernel into jupyter:

preql --install-jupyter

1. Run Jupyter Notebook as usual:

jupyter notebook

1. create a new notebook with the Preql kernel, or open an existing one.

Inside the notebook, use the connect() function to connect to a database.

For an example, view the following Jupyter notebook: Tutorial: Exploring a database with Preql

10.4 Use as a Python library

from preql import Preql
p1 = Preql() # Use memory database
p2 = Preql("sqlite://path/to/file") # Use existing or new file

assert p1('sum([1..10])') == 45

38 Chapter 10. Getting Started

https://github.com/erezsh/Preql/blob/master/docs/chinook_tutorial.ipynb


Preql Documentation

10.5 Run as a REST / GraphQL server

Coming soon!

10.6 Further reading

• Learn the language

• Read the tutorial

10.5. Run as a REST / GraphQL server 39



Preql Documentation

40 Chapter 10. Getting Started



CHAPTER 11

Why not SQL/ORM/Pandas ?

11.1 SQL

SQL first appeared in 1974, and aimed to provide a database interface that was based on natural language. It was
clever and innovative at the time of its conception, but today we can look back on its design and see many fundamental
mistakes.

Among its many faults, SQL is excessively verbose, is bad at catching and reporting errors, has no first-class or
high-order functions, is awkward for interactive work, and it has a fragmented ecosystem and many different and
incompatible dialects.

Some attempts have been made to address these issues, mainly in the form of ORMs.

11.1.1 Good parts of SQL

• Relational Algebra

• Declarative queries

• Many mature, well-tested implementations

• Intended for interactive work

11.1.2 Bad parts of SQL

• Lack of first-class functions

• Hard to re-use code

• Bad error-handling (if any)

• Long-winded and clumsy syntax

• Code lives on the server, so there is no version control (such as git)

• Interactive clients leave a lot to be desired

41



Preql Documentation

(there are plenty more on both sides of the scales)

Preql adopts the good parts of SQL, and tries to solve the bad parts.

11.2 ORMs

ORMs (object-relational mapping), are frameworks that let their users interact with the database using constructs
that are native to the host programming language. Those constructs are then compiled to SQL, and executed in the
database.

ORMs are usually more concise and more composable than SQL. However, they are themselves limited by their host
languages, which were never designed for relational data processing. For the most part, they have awkward syntax,
and they only support simple constructs and queries, and simplistic compostion.

11.3 Pandas

Given the failings of SQL and ORMs, it’s no wonder that many programmers and data analysts choose to disregard
relational databases altogether, and use completely new approaches.

Pandas is one of those new approaches. Implemented entirely on top of Python and Numpy, it has gained a lot of
popularity in recent years due to its accessibility and relative simplicity. It also has a wide range of features that were
designed specifically for data scientists.

Unfortunately, it comes with its own set of faults. Pandas is slow (despite recent efforts to accelerate it), it has awkward
syntax, and it isn’t well suited for working with relational, structured or linked data.

See also: Code comparison

42 Chapter 11. Why not SQL/ORM/Pandas ?

comparison.html


CHAPTER 12

Language Reference

(This document is incomplete, and needs more work)

Preql’s syntax is a mix between Go and Javascript.

• Comments start with //

12.1 Literals

12.1.1 Null

Null values are specified with null. Null is only ever equal to itself:

>> null == null
true

12.1.2 Booleans

The two boolean values are true and false, and both are of type bool.

>> type(true)
bool
>> type(false)

bool

12.1.3 Numbers

Numbers are written as integers or floats.

Standard operators apply: +, -, *, /, %, **, ==, !=, <, >, <=, >=

43



Preql Documentation

>> type(10)
int
>> type(3.14)

float

Operations between ints and floats result in a float:

>> type(10 + 3.14)
float

Division always returns a float. For “floordiv”, use the /~ operator:

>> 10 / 3
3.3333333333333335
>> 10 /~ 3

3

12.1.4 Strings

Standard operators apply: +, *, ==, !=

Strings, like in Python, take one of the following forms:

• 'a'

• "a"

• '''a'''

• """a"""

>> type("a")
string

Triple-quoted strings capture newlines, while single-quoted strings do not.

Strings support the like operator, or ~, similar to SQL’s like operator:

>> "hello" ~ "h%"
true

Strings support the slicing operators []:

>> "preql"[3..]
"ql"

12.1.5 Structs

Structs can be created on the fly, using the {} syntax:

Structs are essentially dictionaries (or maps), in which the keys are always of the type string.

>> x = {a:1, b:2}
{a: 1, b: 2}
>> x.a

1

(continues on next page)

44 Chapter 12. Language Reference



Preql Documentation

(continued from previous page)

>> type(x)
struct[a: int, b: int]

12.1.6 Lists

Lists can be specified using the [item1, item2, ...] syntax. They are equivalent to a table with a single item
column.

Lists support all tables operations.

>> ["a", "b", "c"]
table =3

item

a
b
c

12.1.7 Ranges

Ranges can be specified using the [start..end] syntax. They are equivalent to a list of numbers.

>> type([1..10])
list[int]

12.1.8 Functions

• Functions are defined with func, like in Go

// normal syntax
func abs(x) {

"docstring"
if (x < 0) {

return -x
}
return x

}

// short-hand syntax
func add1(x) = x + 1

"docstring"

12.2 Keywords

12.2.1 Operators

12.2. Keywords 45



Preql Documentation

46 Chapter 12. Language Reference



CHAPTER 13

Preql Types

any
A meta-type that can match any type.

Subtypes unknown, type, object,

Examples

>> isa(my_obj, any) // always returns true
true
>> isa(my_type, any) // always returns true
true

union
A meta-type that means ‘either one of the given types’

Example

>> int <= union[int, string]
true
>> union[int, string] <= int
false
>> union[int, string] <= union[string, int]
true

type
The type of types

Supertypes any

Examples

>> type(int) == type(string)
true
>> int <= type(int) # int isn't a subtype of `type`
false

(continues on next page)

47



Preql Documentation

(continued from previous page)

>> isa(int, type(int)) # int is an instance of `type`
true

object
The base object type

Supertypes any

Subtypes nulltype, primitive, container, aggregate_result[any], function, property, module, signal,

nulltype
The type of the singleton null. Represents SQL NULL, but behaves like Python’s None,

Supertypes object

Examples

>> null == null
true
>> null + 1
[bold]TypeError[/bold]: Operator '+' not implemented for nulltype and
→˓int

primitive
The base type for all primitives

Supertypes object

Subtypes text, number, bool, timestamp, datetime, date, time, t_id[table], t_relation[any],

text
A text type (behaves the same as string)

Supertypes primitive

Subtypes _rich, string,

string
A string type (behaves the same as text)

Supertypes text

number
The base type for all numbers

Supertypes primitive

Subtypes int, float, decimal,

int
An integer number

Supertypes number

float
A floating-point number

Supertypes number

bool
A boolean, which can be either true or false

Supertypes primitive

48 Chapter 13. Preql Types



Preql Documentation

timestamp
A timestamp type (unix epoch)

Supertypes primitive

Methods

datetime
A datetime type (date+time combined)

Supertypes primitive

container
The base type of containers. A container holds other objects inside it.

Supertypes object

Subtypes struct, table, aggregated[any], projected[any], json[any],

struct
A structure type

Supertypes container

Subtypes row,

row
A row in a table. (essentially a named-tuple)

Supertypes struct

table

A table type. Tables support the following operations - - Projection (or: map), using the {} operator
- Selection (or: filter), using the [] operator - Slice (or: indexing), using the [..] operator - Order (or:
sorting), using the order{} operator - Update, using the update{} operator - Delete, using the delete[]
operator - + for concat, & for intersect, | for union

Supertypes container

Subtypes list[item: any], set[item: any],

Methods

add_index(column_name, unique)
Add an index to the table, to optimize filtering operations. A method of the table type.

Parameters

• column_name (union[string, list[item: string]]) – The name of the
column to add index

• unique (bool) – If true, every value in the column is expected to be unique (de-
fault=false)

Note Future versions of this function will accept several columns.

Example

>> table x = [1,2,3]{item}
>> x.add_index("item")

list[item: any]
A list type

Supertypes table

49



Preql Documentation

set[item: any]
A set type, in which all elements are unique

Supertypes table

t_id[table]
The type of a table id

Supertypes primitive

t_relation[any]
The type of a table relation

Supertypes primitive

aggregated[any]
A meta-type to signify aggregated operations, i.e. operations inside a grouping

Supertypes container

Example

>> x = [1]
>> one one x{ => repr(type(item))}
"aggregated[item: int]"

projected[any]
A meta-type to signify projected operations, i.e. operations inside a projection.

Supertypes container

Example

>> x = [1]
>> one one x{ repr(type(item)) }
"projected[item: int]"

json[any]
A json type

Supertypes container

Subtypes json_array,

json_array
A json array type. Created by aggregation.

Supertypes json[any]

function
A meta-type for all functions

Supertypes object

module
A meta-type for all modules

Supertypes object

signal
A meta-type for all signals (i.e. exceptions)

Supertypes object

Subtypes Exception,

50 Chapter 13. Preql Types



CHAPTER 14

Preql Modules

14.1 __builtins__

PY(code_expr, code_setup)
Evaluate the given Python expression and convert the result to a Preql object

Parameters

• code_expr (string) – The Python expression to evaluate

• code_setup (string?) – Setup code to prepare for the evaluation (default=null)

Note This function is still experemental, and should be used with caution.

Example

>> PY("sys.version", "import sys")
"3.8.2 (tags/v3.8.2:7b3ab59, Feb 25 2020, 23:03:10)"

SQL(result_type, sql_code)
Create an object with the given SQL evaluation code, and given result type. The object will only be evaluated
when required by the program flow. Using $var_name in the code will embed it in the query. Both primitives
and tables are supported. A special $self variable allows to perform recursion, if supported by the dialect.

Parameters

• result_type (union[table, type]) – The expected type of the result of the SQL
query

• sql_code (string) – The SQL code to be evaluated

Example

>> ["a", "b"]{item: SQL(string, "$item || '!'")}
table =2

item

(continues on next page)

51



Preql Documentation

(continued from previous page)

a!
b!

>> x = ["a", "b", "c"]
>> SQL(type(x), "SELECT item || '!' FROM $x")
table =3

item

a!
b!
c!

approx_product(col)
Returns the approximate product of an aggregated column. It does so using logarithmic math. See product for
an accurate version of this function.

Parameters col (aggregated[item: number]) –

cast(obj, target_type)
Attempt to cast an object to a specified type The resulting object will be of type target_type, or a TypeError
exception will be thrown.

Parameters

• obj (any) – The object to cast

• target_type (type) – The type to cast to

char(n)
Returns the character with the given ASCII code

Parameters n (int) –

char_ord(n)
Returns the ascii code of the given character

Parameters n (string) –

char_range(start, end)
Produce a list of all characters from ‘start’ to ‘stop’

Parameters

• start (string) –

• end (string) –

Example

>> char_range('a', 'z')

columns(obj)
Returns a dictionary {column_name: column_type} for the given table

Parameters obj (container) –

Example

52 Chapter 14. Preql Modules



Preql Documentation

>> columns([0])
{item: int}

commit()
Commit the current transaction This is necessary for changes to the tables to become persistent.

connect(uri, load_all_tables, auto_create)
Connect to a new database, specified by the uri

Parameters

• uri (string) – A string specifying which database to connect to (e.g. “sqlite:///test.db”)

• load_all_tables (bool) – If true, loads all the tables in the database into the global
namespace. (default=false)

• auto_create (bool) – If true, creates the database if it doesn’t already exist (Sqlite
only) (default=false)

Example

>> connect("sqlite://:memory:") // Connect to a database in memory

count(obj)
Count how many rows are in the given table, or in the projected column. If no argument is given, count all the
rows in the current projection.

Parameters obj (container?) –

Examples

>> count([0..10])
10
>> [0..10]{ => count() }
table =1

count

10

>> [0..10]{ => count(item) }
table =1

count

10

count_false(field)
Count how many values in the field are false or zero

Parameters field (aggregated[any]) –

Example

>> [0,1,2,0,3]{ => count_false(item) }
table =1

count_false

(continues on next page)

14.1. __builtins__ 53



Preql Documentation

(continued from previous page)

2

See Also

• count_true

count_true(field)
Count how many values in the field are true (non-zero)

Parameters field (aggregated[any]) –

Example

>> [0,1,2,0,3]{ => count_true(item) }
table =1

count_true

3

See Also

• count_false

debug()
Breaks the execution of the interpreter, and enters into a debug session using the REPL environment. Use c() to
continue the execution.

dict(...x)
Constructs a dictionary

dir(obj)
List all names in the namespace of the given object. If no object is given, lists the names in the current names-
pace.

Parameters obj (any) –

distinct(t)
Removes identical rows from the given table

Parameters t (table) –

Example

>> distinct(["a","b","b","c"])
table =3

item

a
b
c

env_vars()
Returns a table of all the environment variables. The resulting table has two columns: name, and value.

54 Chapter 14. Preql Modules



Preql Documentation

exit(value)
Exit the current interpreter instance. Can be used from running code, or the REPL. If the current interpreter is
nested within another Preql interpreter (e.g. by using debug()), exit() will return to the parent interpreter.

Parameters value (any?) –

first(obj)
Returns the first member of a column or a list

Parameters obj (union[table, aggregated[any]]) –

Examples

>> first([1,2,3])
1
>> [1,2,3]{ => first(item) }
table =1

first

1

first_or_null(obj)
Returns the first member of a column or a list, or null if it’s empty See Also first().

Parameters obj (union[table, projected[any]]) –

fmt(s)
Format the given string using interpolation on variables marked as $var

Parameters s (string) –

Example

>> ["a", "b", "c"]{item: fmt("$item!")}
table =3

item

a!
b!
c!

force_eval(expr)
Forces the evaluation of the given expression. Executes any db queries necessary.

Parameters expr (object) –

get_db_type()
Returns a string representing the type of the active database.

Example

>> get_db_type()
"sqlite"

help(inst)
Provides a brief summary for the given object

Parameters inst (any) –

14.1. __builtins__ 55



Preql Documentation

import_csv(table, filename, header)
Import a csv file into an existing table

Parameters

• table (table) – A table into which to add the rows.

• filename (string) – A path to the csv file

• header (bool) – If true, skips the first line (default=false)

import_json(table_name, uri)
Imports a json file into a new table. Returns the newly created table.

Parameters

• table_name (string) – The name of the table to create

• uri (string) – A path or URI to the JSON file

Note This function requires the pandas Python package.

import_table(name, columns)
Import an existing table from the database, and fill in the types automatically.

Parameters

• name (string) – The name of the table to import

• columns (list?[item: string]) – If this argument is provided, only these
columns will be imported. (default=null)

Example

>> import_table("my_sql_table", ["some_column", "another_column])

inspect_sql(obj)
Returns the SQL code that would be executed to evaluate the given object

Parameters obj (object) –

is_empty(tbl)
Efficiently tests whether the table expression tbl is empty or not

Parameters tbl –

isa(obj, type)
Checks if the give object is an instance of the given type

Parameters

• obj (any) –

• type (type) –

Examples

>> isa(1, int)
true
>> isa(1, string)
false
>> isa(1.2, number)
true
>> isa([1], table)
true

56 Chapter 14. Preql Modules



Preql Documentation

issubclass(a, b)
Checks if type ‘a’ is a subclass of type ‘b’

Parameters

• a (type) –

• b (type) –

Examples

>> issubclass(int, number)
true
>> issubclass(int, table)
false
>> issubclass(list, table)
true

join($on, ...tables)
Inner-join any number of tables. Each argument is expected to be one of - (1) A column to join on. Columns
are attached to specific tables. or (2) A table to join on. The column will be chosen automatically, if there is no
ambiguity. Connections are made according to the relationships in the declaration of the table.

Parameters

• $on – Optional special keyword argument for specifying join condition. When specified,
auto-join will be skipped. (default=null)

• tables – Provided as keyword arguments, in the form of <name>: <table>. Each keyword
argument must be either a column, or a table.

Returns A new table, where each column is a struct representing one of the joined tables.

Examples

>> join(a: [0].item, b: [0].item)
table join46 =1

a b

{'item': 0} {'item': 0}

>> join(a: [1..5].item, b: [3..8].item) {...a}
table =2

item

3
4

>> leftjoin(a: [1,3], b: [1,2], $on: a.item > b.item)
table join78 =3

a b

{'item': 1} {'item': None}
{'item': 3} {'item': 1}
{'item': 3} {'item': 2}

>> join(c: Country, l: Language) {...c, language: l.name}

14.1. __builtins__ 57



Preql Documentation

joinall($on, ...tables)
Cartesian product of any number of tables See join

Parameters $on –

Example

>> joinall(a: [0,1], b: ["a", "b"])
table joinall14 =4

a b

{'item': 0} {'item': 'a'}
{'item': 0} {'item': 'b'}
{'item': 1} {'item': 'a'}
{'item': 1} {'item': 'b'}

leftjoin($on, ...tables)
Left-join any number of tables See join

Parameters $on –

length(s)
Returns the length of the string For tables or lists, use count()

Parameters s (string) –

limit(tbl, n)
Returns the first ‘n’ rows in the table.

Parameters

• tbl (table) –

• n (int) –

limit_offset(tbl, lim, offset)
Returns the first ‘n’ rows in the table at the given offset.

Parameters

• tbl (table) –

• lim (int) –

• offset (int) –

list_median(x)
Find the median of a list Cannot be used inside a projection.

Parameters x (list[item: any]) –

lower(s)
Return a copy of the string converted to lowercase.

Parameters s (string) –

map_range(tbl, start, end)
For each row in the table, assigns numbers out of a range, and produces (end-start) new rows instead, each
attached to a number. If start or end are functions, the index is the result of the function, per row.

Parameters

• tbl (table) – Table to map the range onto

58 Chapter 14. Preql Modules



Preql Documentation

• start (union[int, function]) – The starting index, or a function producing the
starting index

• end (union[int, function]) – The ending index, or a function producing the ending
index

Examples

>> map_range(["a", "b"], 0, 3)
table =6

i item

0 a
1 a
2 a
0 b
1 b
2 b

>> map_range(["a", "ab"], 1, length)
table =3

i item

1 a
1 ab
2 ab

max(col)
Finds the maximum of a column or a list See Also sum.

Parameters col (union[table[item: number], aggregated[item:
number]]) –

mean(col)
Returns the mean average of a column or a list See Also sum.

Parameters col (union[table[item: number], aggregated[item:
number]]) –

min(col)
Finds the minimum of a column or a list See Also sum.

Parameters col (union[table[item: number], aggregated[item:
number]]) –

names(obj)
List all names in the namespace of the given object. If no object is given, lists the names in the current names-
pace.

Parameters obj (any) –

now()
Returns the current timestamp

outerjoin($on, ...tables)
Outer-join any number of tables See join

Parameters $on –

14.1. __builtins__ 59



Preql Documentation

page(table, index, page_size)
Pagination utility function for tables

Parameters

• table –

• index –

• page_size –

product(col)
Returns the product of a column or a list See Also sum.

Parameters col (union[table[item: number], aggregated[item:
number]]) –

Note This function is only available in sqlite3 by default. To make it available in postgres, users
must call the install_polyfills() function. For databases that don’t support product, see ap-
prox_product().

random()
Returns a random float number between 0 to 1

remove_table(table_name)
Remove table from database (drop table)

Parameters table_name –

remove_table_if_exists(table_name)
Remove table from database (drop table). Ignore if it doesn’t exist.

Parameters table_name –

repeat(s, num)
Repeats the string num times.

Parameters

• s (string) –

• num (int) –

Example

>> _repeat("ha", 3)
"hahaha"

repr(obj)
Returns the representation text of the given object

Parameters obj (any) –

rollback()
Rollback the current transaction This reverts the data in all the tables to the last commit. Local variables will
remain unaffected.

round(n, precision)
Returns a rounded float at the given precision (i.e. at the given digit index)

Parameters

• n (number) –

• precision (int) –

60 Chapter 14. Preql Modules



Preql Documentation

Example

>> round(3.14)
3.0
>> round(3.14, 1)
3.1

sample_fast(tbl, n, bias)
Returns a random sample of n rows from the table in one query (or at worst two queries)

Parameters

• tbl (table) – The table to sample from

• n (int) – The number of items to sample

• bias (number) – Add bias (reduce randomness) to gain performance. Higher values of
‘bias’ increase the chance of success in a single query, but may introduce a higher bias in
the randomness of the chosen rows, especially in sorted tables. (default=0.05)

sample_ratio_fast(tbl, ratio)
Returns a random sample of rows from the table, at the approximate amount of (ratio*count(tbl)).

Parameters

• tbl –

• ratio –

serve_rest(endpoints, port)
Start a starlette server (HTTP) that exposes the current namespace as REST API

Parameters

• endpoints (struct) – A struct of type (string => function), mapping names to the
functions.

• port (int) – A port from which to serve the API (default=8080)

Note Requires the starlette package for Python. Run pip install starlette.

Example

>> func index() = "Hello World!"
>> serve_rest({index: index})
INFO Started server process [85728]
INFO Waiting for application startup.
INFO Application startup complete.
INFO Uvicorn running on http://127.0.0.1:8080 (Press CTRL+C to
→˓quit)

stddev(col)
Finds the standard deviation of a column or a list See Also sum.

Parameters col (union[table[item: number], aggregated[item:
number]]) –

str_contains(substr, s)
Tests whether string substr is contained in s

Parameters

• substr (string) –

• s (string) –

14.1. __builtins__ 61



Preql Documentation

Example

>> str_contains("i", "tim")
true
>> str_contains("i", "team")
false

str_index(substr, s)
Finds in which index does substr appear in s.

Parameters

• substr (string) – The substring to find

• s (string) – The string to search in

Returns A 0-based index (int) if found the substring, or -1 if not found.

Example

>> str_index("re", "preql")
1
>> str_index("x", "preql")
-1

str_notcontains(substr, s)
Tests whether string substr is not contained in s Equivalent to not str_contains(substr, s).

Parameters

• substr (string) –

• s (string) –

sum(col)
Sums up a column or a list.

Parameters col (union[table[item: number], aggregated[item:
number]]) –

Examples

>> sum([1,2,3])
6
>> [1,2,3]{ => sum(item) }
table =1

sum

6

table_concat(t1, t2)
Concatenate two tables (union all). Used for t1 + t2

Parameters

• t1 (table) –

• t2 (table) –

table_intersect(t1, t2)
Intersect two tables. Used for t1 & t2

62 Chapter 14. Preql Modules



Preql Documentation

Parameters

• t1 (table) –

• t2 (table) –

table_subtract(t1, t2)
Substract two tables (except). Used for t1 - t2

Parameters

• t1 (table) –

• t2 (table) –

table_union(t1, t2)
Union two tables. Used for t1 | t2

Parameters

• t1 (table) –

• t2 (table) –

tables()
Returns a table of all the persistent tables in the database. The resulting table has two columns: name, and type.

temptable(expr, const)
Generate a temporary table with the contents of the given table It will remain available until the database session
ends, unless manually removed.

Parameters

• expr (table) – the table expression to create the table from

• const (bool?) – whether the resulting table may be changed or not. (default=null)

Note A non-const table creates its own id field. Trying to copy an existing id field into it will cause
a collision

type(obj)
Returns the type of the given object

Parameters obj (any) –

Example

>> type(1)
int
>> type([1])
list[item: int]
>> type(int)
type

upper(s)
Return a copy of the string converted to uppercase.

Parameters s (string) –

zipjoin(a, b)
Joins two tables on their row index. Column names are always a and b. Result is as long as the shortest table.
Similar to Python’s zip() function.

Parameters

• a (table) –

14.1. __builtins__ 63



Preql Documentation

• b (table) –

Example

>> zipjoin(["a", "b"], [1, 2])
table =2

a b

{'item': 'a'} {'item': 1}
{'item': 'b'} {'item': 2}

zipjoin_left(a, b)
Similar to zipjoin, but the result is as long as the first parameter. Missing rows will be assigned null.

Parameters

• a (table) –

• b (table) –

Example

>> zipjoin_left(["a", "b"], [1])
table =2

a b

{'item': 'a'} {'item': 1}
{'item': 'b'} {'item': null}

zipjoin_longest(a, b)
Similar to zipjoin, but the result is as long as the longest table. Missing rows will be assigned null.

Parameters

• a (table) –

• b (table) –

14.2 graph

bfs(edges, initial)
Performs a breadth-first search on a graph.

Parameters

• edges (table) – a table of type {src: int, dst: int}, defining the edges of the graph

• initial (table) – list[int], specifies from which nodes to start

walk_tree(edges, initial, max_rank)
Walks a tree and keeps track of the rank. Doesn’t test for uniqueness. Nodes may be visited more than once.
Cycles will repeat until max_rank.

Parameters

• edges (table) – a table of type {src: int, dst: int}, defining the edges of the graph

64 Chapter 14. Preql Modules



Preql Documentation

• initial (table) – list[int], specifies from which nodes to start

• max_rank (int) – integer limiting how far to search

14.2. graph 65



Preql Documentation

66 Chapter 14. Preql Modules



CHAPTER 15

Python API Reference

15.1 Preql

class preql.Preql(db_uri: str = ’sqlite://:memory:’, print_sql: bool = False, auto_create: bool = False,
autocommit: bool = False)

Provides an API to run Preql code from Python

Example

>>> import preql
>>> p = preql.Preql()
>>> p('[1, 2]{item+1}')
[2, 3]

__init__(db_uri: str = ’sqlite://:memory:’, print_sql: bool = False, auto_create: bool = False, auto-
commit: bool = False)

Initialize a new Preql instance

Parameters

• db_uri (str, optional) – URI of database. Defaults to using a non-persistent mem-
ory database.

• print_sql (bool, optional) – Whether or not to print every SQL query that is
executed (default defined in settings)

load(filename, rel_to=None)
Load a Preql script

Parameters

• filename (str) – Name of script to run

• rel_to (Optional[str]) – Path to which filename is relative.

67



Preql Documentation

start_repl(*args)
Run the interactive prompt

import_pandas(**dfs)
Import pandas.DataFrame instances into SQL tables

Example

>>> pql.import_pandas(a=df_a, b=df_b)

class preql.api.TablePromise(interp, inst)
Returned by Preql whenever the result is a table

Fetching values creates queries to database engine

to_json()
Returns table as a list of rows, i.e. [{col1: value, col2: value, ...}, ...]

to_pandas()
Returns table as a Pandas dataframe (requires pandas installed)

__eq__(other)
Compare the table to a JSON representation of it as list of objects

Essentially: return self.to_json() == other

__len__()
Run a count query on table

__getitem__(index)
Run a slice query on table

Preql (pronounced: Prequel) is an interpreted relational query language, that compiles to SQL.

It is designed for use by data engineers, analysts and data scientists.

It features modern syntax and semantics, Python integration, inline SQL, and an interactive enviroment.

It supports PostgreSQL, MySQL, SQLite, BigQuery (WIP), and soon more.

68 Chapter 15. Python API Reference



CHAPTER 16

Resources

• Introduction

• Getting Started

• Features

• Performance

• Roadmap

• FAQ

• Tutorials

– Tutorial for the basics of Preql

– Code comparison: Preql, SQL and the rest

– Jupyter tutorial

• Propaganda

– Why not SQL/ORM/Pandas ?

• Reference

– Language Reference

– Preql Types

– Preql Modules

– Python API Reference

69

https://github.com/erezsh/Preql/blob/master/docs/chinook_tutorial.ipynb


Preql Documentation

70 Chapter 16. Resources



Index

Symbols
__eq__() (preql.api.TablePromise method), 68
__getitem__() (preql.api.TablePromise method), 68
__init__() (preql.Preql method), 67
__len__() (preql.api.TablePromise method), 68

A
add_index(), 49
approx_product() (built-in function), 52

B
bfs() (built-in function), 64

C
cast() (built-in function), 52
char() (built-in function), 52
char_ord() (built-in function), 52
char_range() (built-in function), 52
columns() (built-in function), 52
commit() (built-in function), 53
connect() (built-in function), 53
count() (built-in function), 53
count_false() (built-in function), 53
count_true() (built-in function), 54

D
debug() (built-in function), 54
dict() (built-in function), 54
dir() (built-in function), 54
distinct() (built-in function), 54

E
env_vars() (built-in function), 54
exit() (built-in function), 54

F
first() (built-in function), 55
first_or_null() (built-in function), 55
fmt() (built-in function), 55

force_eval() (built-in function), 55

G
get_db_type() (built-in function), 55

H
help() (built-in function), 55

I
import_csv() (built-in function), 55
import_json() (built-in function), 56
import_pandas() (preql.Preql method), 68
import_table() (built-in function), 56
inspect_sql() (built-in function), 56
is_empty() (built-in function), 56
isa() (built-in function), 56
issubclass() (built-in function), 56

J
join() (built-in function), 57
joinall() (built-in function), 57

L
leftjoin() (built-in function), 58
length() (built-in function), 58
limit() (built-in function), 58
limit_offset() (built-in function), 58
list_median() (built-in function), 58
load() (preql.Preql method), 67
lower() (built-in function), 58

M
map_range() (built-in function), 58
max() (built-in function), 59
mean() (built-in function), 59
min() (built-in function), 59

N
names() (built-in function), 59

71



Preql Documentation

now() (built-in function), 59

O
outerjoin() (built-in function), 59

P
page() (built-in function), 59
Preql (class in preql), 67
product() (built-in function), 60
PY() (built-in function), 51

R
random() (built-in function), 60
remove_table() (built-in function), 60
remove_table_if_exists() (built-in function),

60
repeat() (built-in function), 60
repr() (built-in function), 60
rollback() (built-in function), 60
round() (built-in function), 60

S
sample_fast() (built-in function), 61
sample_ratio_fast() (built-in function), 61
serve_rest() (built-in function), 61
SQL() (built-in function), 51
start_repl() (preql.Preql method), 67
stddev() (built-in function), 61
str_contains() (built-in function), 61
str_index() (built-in function), 62
str_notcontains() (built-in function), 62
sum() (built-in function), 62

T
table_concat() (built-in function), 62
table_intersect() (built-in function), 62
table_subtract() (built-in function), 63
table_union() (built-in function), 63
TablePromise (class in preql.api), 68
tables() (built-in function), 63
temptable() (built-in function), 63
to_json() (preql.api.TablePromise method), 68
to_pandas() (preql.api.TablePromise method), 68
type() (built-in function), 63

U
upper() (built-in function), 63

W
walk_tree() (built-in function), 64

Z
zipjoin() (built-in function), 63

zipjoin_left() (built-in function), 64
zipjoin_longest() (built-in function), 64

72 Index


	Preface
	Preql
	Preql compiles to SQL
	Preql is interpreted
	Better syntax, semantics, and practices
	Escape hatch to SQL

	Conclusion
	Features
	Planned features

	Performance
	Components
	Benchmarks

	Roadmap
	FAQ
	Technical Help
	Community and Support
	License

	Tutorial for the basics of Preql
	What is Preql?
	Getting Started (Install & How to use)
	Basic Expressions
	Functions
	Tables
	The SQL Escape-hatch
	Notable Built-in functions
	Calling Preql from Python

	Code comparison: Preql, SQL and the rest
	Table Operations
	Gotchas
	Programming

	Getting Started
	Install
	Run the interpreter in the console (REPL)
	Run in a Jupyter Notebook
	Use as a Python library
	Run as a REST / GraphQL server
	Further reading

	Why not SQL/ORM/Pandas ?
	SQL
	ORMs
	Pandas

	Language Reference
	Literals
	Keywords

	Preql Types
	Preql Modules
	__builtins__
	graph

	Python API Reference
	Preql

	Resources
	Index

